AIAA 96-0062

EXPERIMENTS ON AIRFOILS AT LOW REYNOLDS NUMBERS

Michael S. Selig, James J. Guglielmo, Andy P. Broeren and Philippe Giguère

University of Illinois at Urbana-Champaign
Urbana, IL

34th Aerospace Sciences Meeting & Exhibit
January 15-18, 1996 / Reno, NV
EXPERIMENTS ON AIRFOILS AT LOW REYNOLDS NUMBERS

Michael S. Selig,* James J. Guglielmo,† Andy P. Broeren‡ and Philippe Giguère†

Department of Aeronautical and Astronautical Engineering
University of Illinois at Urbana-Champaign
Urbana, Illinois 61801

Abstract

Lift and drag measurements were taken on 34 airfoils at low Reynolds numbers in an attempt to develop a consistent database for use in design studies that require accurate low Reynolds number airfoil data. From these data emerged several interesting results related to the behavior of the laminar separation bubbles and their effect on the lift characteristics. A plateau in the lift curve of symmetrical airfoils in the vicinity of an angle of attack of 0 deg was found to be common in the Reynolds number range of 40,000 to 100,000. Through the use of zig-zag type boundary-layer trips, this nonlinearity can be reduced owing to a reduction in the size of the laminar separation bubbles. The influence of laminar separation bubbles was also found to dominate the performance of several high-lift airfoils in the Reynolds number range of 80,000 to 150,000. In particular, hysteresis loops in the lift curve were present, and these are related to the size of the laminar separation bubble as deduced from drag data. The data reveals that some airfoils exhibit both counterclockwise and clockwise hysteresis loops for a given Reynolds number. Moreover, depending on the airfoil, either type of loop can occur first.

Introduction

A wide variety of small unmanned aerial vehicles (UAVs)† operate in the low Reynolds number regime in which the airfoil aerodynamics play a key role in aircraft performance and handling. In this regime, natural boundary-layer transition takes place through a laminar separation bubble that forms as the laminar boundary layer first separates, then becomes unstable, makes a transition to turbulent flow and reattaches to the airfoil to form a laminar separation bubble. This bubble often results in a notable airfoil-performance degradation that is characterized by undesirable high drag, nonlinear-

*Assistant Professor. Member AIAA.
†Graduate Research Assistant. Student Member AIAA.
‡Graduate Research Assistant.

Copyright © 1996 by Michael S. Selig, James J. Guglielmo, Andy P. Broeren and Philippe Giguère. Published by the American Institute of Aeronautics and Astronautics, Inc. with permission.
Experimental Apparatus and Techniques

The discussion of the experimental apparatus and measurement techniques will be brief since more details can be found in Ref. 19.

Wind Tunnel

All experiments were performed in the University of Illinois at Urbana-Champaign (UIUC) open-return subsonic wind tunnel (Fig. 2). The dimensions of the rectangular test-section are approximately 2.8 x 4 ft in cross-section and 8 ft long. In order to ensure good test-section flow quality, the tunnel settling chamber contains a 4 in thick sheet of honeycomb and four anti-turbulence screens, resulting in a test section turbulence level of less than 0.1% over the 3–55 mph speed range required for these tests.

Airfoil Models

All models had a 12 in chord and 33 5/8 in span. To isolate the ends of the model from the tunnel side-wall boundary layers and the support hardware, the models were mounted horizontally between two 3/8 in thick, 6 ft long Plexiglas splitter plates (see Fig. 3). The gap between the model and Plexiglas was nominally 0.05 in.
was located fairly close to the model, the measure­ments were corrected for solid blockage, wake blockage and streamline curvature effects. The freestream pi tot-static probe required that the freestream velocity be measured between them due a spillage effect (air flowing between the splitter plates and the tunnel side walls). Since the freestream pitot-static probe was located fairly close to the model, the measures­ments were corrected for airfoil circulation effects. The overall uncertainty is estimated to be 1.5% for the lift and 4.5% for the drag (3% of which is due to the spanwise variation in the drag). Comparison of the data for the E387 baseline model showed good agreement with data taken at NASA Langley, Delft, and Stuttgart. Discrepancies that did exist can be attributed largely to the slight decamber of the model.

Results and Discussion

Lift Characteristics of Symmetrical Airfoils

Lift characteristics for the NACA 0009 airfoil at Reynolds numbers of 40,000, 60,000, 80,000 and 100,000 are shown in Fig. 4. As seen, the lift characteris­tics are not typical of those found for higher Reynolds number airfoil flows in which the lift curve is nearly linear with a slope of 2\pi. For each Reynolds number, the lift curve slope is initially less than 2\pi and then greater before it resumes the more typical linear characteristic until stall.

The peculiar nonlinear features of the lift curve around 0 deg angle of attack are not unique to the NACA 0009 airfoil. For example, Figure 5 shows the lift characteristics of the symmetrical, 10%-thick SD8020 airfoil over the same Reynolds number range. Moreover, for the symmetrical NACA 66a-018 airfoil, Mueller & Batill found a similar result at a Reynolds number of 130,000. For small positive angles of attack the \(C_l \) was not only reduced but in fact negative (e.g, for \(\alpha \approx 1 \) deg, \(C_l \approx -0.1 \)). More recently, Sato & Sunada tested a 28.57% thick symmetrical NACA airfoil at \(Re = 33,000 \) and found that the airfoil developed negligible lift throughout its normal operating range.

The unusual lift characteristics of symmetrical airfoils at low Reynolds numbers is not desirable. Low Reynolds number UAVs can have unusual longitudinal handling characteristics when full-flying symmetrical stabilators are used. The shallow lift-curve slope about 0 deg angle of attack can make an aircraft (when trimmed with nearly zero load on the tail) feel sluggish as a result of the “deadband” in the lift curve. Moreover, as in the case of the NACA 66a-018, there may even be a control reversal over a small \(\pm 2 \) deg range. Outside of this range, however, the

![Fig. 4 Lift characteristics for the NACA 0009.](image)

![Fig. 5 Lift characteristics for the SD8020.](image)
response is initially large until the linear portion of the lift curve is reached. It should also be noted that subscale tests often make use of symmetrical airfoils, e.g., helicopter rotor testing. In some of these cases, the peculiar low Reynolds number performance of symmetrical airfoils, which is markedly different than the performance at higher Reynolds numbers, may play a larger role than previously believed.

The unusual lift characteristics of the symmetrical airfoils at low Reynolds numbers can be attributed to the behavior of the upper and lower surface laminar separation bubbles and their respective changes in size with angle of attack. As the angle of attack is increased, the pressure gradient on the upper surface steepens, and the upper surface bubble grows larger. This growth in the size of the bubble (sketch in Fig. 6) is supported by flow visualization studies. The larger bubble increases the displacement thickness, which effectively introduces negative camber. On the lower surface, the opposite occurs. The pressure gradient becomes more favorable, the bubble shrinks in size, and the displacement thickness decreases, which in turn introduces more negative camber. In effect the negative camber adds reflex to the otherwise non-cambered airfoil. Consequently, the lift is reduced relative to what might be expected when laminar separation bubble effects are ignored. This loss in lift accounts for the initial deadband in the vicinity of 0 deg angle of attack.

The lift reversal of NACA 663-018 observed by Mueller & and Batill26 can be explained similarly by the effects of laminar separation bubbles. The NACA 663-018 airfoil was designed as a laminar flow airfoil and as such has favorable pressure gradients followed by a relatively steep pressure recovery (as compared with that of the NACA 0009). At low Reynolds numbers, laminar separation on the airfoil takes place far aft in the pressure recovery region.26 As a result, the bubbles are rather large and their effects are amplified accordingly. When the angle of attack is increased to 1 deg, the size of the bubble on the upper surface increases, while on the lower surface it decreases as previously discussed. The bubbles are so much larger, however, that negative lift is produced.

Beyond the deadband (or reversal region), the lift-curve slope steepens and resumes the characteristic features of lift curves at higher Reynolds numbers. The steepening of the lift curve is caused by a reduction in the size of the bubble as it moves toward the leading edge. This is likewise accompanied by a reduction in the drag as well.

Since the poor lift characteristics are caused by laminar separation bubbles, boundary layer trips can be expected to improve the performance. This approach was taken in an attempt to improve the lift characteristics of the SD8020. First, one layer of zig-zag trip tape (Trip A) with a thickness of 0.019 in was placed on both the upper and lower
Fig. 9 Lift characteristics for the SD8020 with zig-zag trips (2 layers — Trip B).

Fig. 10 Lift characteristics for the FX 63-137.

surfaces at 25% chord (see Fig. 7). As seen in Fig. 8, the nonlinearity (deadband) is reduced up to Re = 80,000, after which it is completely eliminated. Second, two layers of the zig-zag trip (Trip B) were used, and the effects of the bubbles were eliminated between Re = 40,000 and 60,000 (see Fig. 9). At Re = 40,000, however, the lift characteristics are greatly improved over the baseline case without trips.

Fig. 11 Lift characteristics for the S1210.

It should also be mentioned that behavior of the bubbles as described can also be deduced from drag data as well. For both the NACA 0009 and SD8020 at a Reynolds number of 60,000 as well as several other similar symmetrical airfoils,17,25 the drag increased in going from an angle of attack of 0 deg to ±1 deg. This trend is consistent with a substantial growth in the size of the suction-side bubble. Moreover, when boundary-layer trips were used, the increase in the drag about 0 deg angle of attack was eliminated and the overall drag was reduced.

Airfoil Static Lift Hysteresis

For some airfoils at low Reynolds numbers, the performance data depends on whether the given test condition was obtained through an increase or decrease in angle of attack or Reynolds number. For example, hysteresis is seen in the lift characteristics of both the FX 63-137 and S1210 shown in Figs. 10 and 11, respectively. (In the figures, increasing and decreasing angles of attack are denoted by square and circle symbols, respectively.) The FX 63-137 airfoil is among the most desirable airfoils for high-lift, low Reynolds number UAV applications,28,29 while
the S1210 airfoil17 was design to be an improvement over the FX 63-137.

These two airfoils exhibit clockwise and counterclockwise hysteresis loops, which are representative of the two general types of lift hysteresis observed at low Reynolds numbers. Although these two types of hysteresis have been given names in the literature,30,31 they will be called here for the sake of discussion long-bubble (counterclockwise) and short-bubble (clockwise) hysteresis. As the names imply, the hysteresis loops are related to the type of laminar separation bubbles.

Short-bubble hysteresis, which occurs at C_l_{max} for the FX 63-137, is caused by a short bubble that remains attached until stall. As the angle of attack is then decreased, the bubble does not reattach until a lower angle of attack is reached.

Long-bubble hysteresis for the FX 63-137 occurs in the mid-lift range (see $Re = 80,000$ and 90,000 cases). Prior to its formation, a nonlinearity appears in the lift curve in the mid-lift range (see $Re = 100,000$ case). Interestingly, this precursor to long-bubble hysteresis is closely associated with the deadband of symmetrical airfoils previously discussed. For the FX 63-137 at $Re = 100,000$, the upper-surface bubble grows larger with an increase in angle of attack. As shown in Fig. 12, this process is accompanied by an increase in the drag coefficient, which is in contrast to the lower drag for the S1210 and its more linear lift curve. As the angle of attack is increased further, the bubble moves toward the leading edge and shortens, with an attendant drag reduction. Hysteresis forms at a lower Reynolds number (e.g., $Re = 90,000$) when for an increase in angle of attack the long bubble suddenly collapses to a short bubble near the leading edge. When the angle of attack is then decreased, the short bubble remains attached until a lower angle of attack, at which condition it bursts into a long bubble.

An interesting feature can be found in the data. For both airfoils, the stall angle of attack that terminates the short-bubble hysteresis loop decreases with a decrease in the Reynolds number. The angle of attack at which the flow reattaches, however, remains essentially constant with Reynolds number. The Reynolds number dependence is consistent with the behavior of full-separated flows (which dictate the reattachment boundary) and laminar separation bubbles (which dictate the stall angle). It is not surprising to find, therefore, that both boundaries of the long-bubble hysteresis loop are Reynolds number dependent.

The possible combinations of the two types of hysteresis are not limited to those exhibited by the FX 63-137 and S1210 airfoils. As shown in Fig. 13, the modified FX 74-CL5-140 and CH 10-48-13 airfoils first have short-bubble hysteresis loops followed by long-bubble hysteresis loops, in contrast to the FX 63-137 and S1210 airfoils which have the loops in opposite order. It should be noted that the CH 10-48-13 made use of a 0.023 in thick 2-D trip at 40% chord on the upper surface (see Fig. 14). Although the four airfoils discussed have both types of hysteresis, most commonly only one type of hysteresis is found on a given airfoil. For instance, as shown in Fig. 13 the Miley M06-13-128 airfoil, also tested by Mueller,31 has only long-bubble hysteresis; whereas, the S1223 high-lift airfoil has only short-bubble hysteresis much like the Lissaman 7769 airfoil tested by Mueller.31

Conclusions

A recent series of tests on low Reynolds number airfoils have lead to a better understanding of the peculiar features found in the lift characteristics of airfoils at low Reynolds numbers. For symmetrical airfoils, the nonlinear features in the lift curve about 0 deg angle of attack are more common than previously believed. As compared with past research, these problems are compounded by an increase in the airfoil thickness and the length of the favorable

\begin{figure}
\centering
\includegraphics[width=\textwidth]{figures/drag_polars.png}
\caption{Drag polars for the FX 63-137 and S1210.}
\end{figure}
pressure gradient, both of which tend to steepen the pressure recovery. The steep pressure recovery promotes a long laminar separation bubble, which ultimately drives the undesirable lift characteristics of symmetrical airfoils about 0 deg angle of attack. Boundary-layer trips appropriately positioned and sized can mitigate these adverse effects for Reynolds numbers as low as 40,000 for airfoils that are approximately 10% thick. Thus, it is recommended that boundary-layer trips be used on symmetrical airfoils at low Reynolds numbers, especially when operated near 0 deg angle of attack.

Tests on a six high-lift airfoils have revealed that some airfoils exhibit two types of hysteresis, named here long-bubble and short-bubble hysteresis after the type of bubble most associated with the hysteresis. In some cases, long-bubble hysteresis is followed by short-bubble hysteresis and vice versa. More commonly, only short-bubble or long-bubble hysteresis is present, while sometimes no hysteresis exists.

Acknowledgments

This research was supported through the private donations to the University of Illinois. The authors wish to thank Mark Allen, Yvan Tinel, Ray Olsen, Ron Wagner, Mark Nankivil and Chuck Hollinger for their skillful efforts in the fabrication of the wind tunnel models. Cameron Ninham also made significant contributions to this work.

References

23Volkers, D. F., “Preliminary Results of Wind Tunnel Measurements on Some Airfoil Sections at Reynolds Numbers between 0.6×10^5 and 5.0×10^5,” Memo M-276, Delft University of Technology, The Netherlands, 1977.