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Importance of Airfoil Data in Rotor Design
•

 
Independent of the analysis method...

•

 
Inspect airfoil data before proceeding with design

•

 
Have data over a range of Reynolds number
–

 
Designing blades with data for only one Reynolds 
number can mislead the designer

Trash TrashAnalysis
Method
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PROPID Airfoil Data Files
•

 
Format
–

 
Different airfoil mode types, but focus on mode 4

–

 
Data tabulated for each Reynolds number 

–

 
Separate columns for angle of attack, cl

 

, cd

 

, cm

 

(if 
available)

–

 
Data must be provided up to an angle of attack of 
27.5 deg.

–

 
If data not available up to 27.5 deg., need to add 
data points
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•

 
Sample File for the S813 (Airfoil Mode 4)

Number of Reynolds numbers for which data are tabulated

Comments

Number of data points to follow for first Reynolds number

First Reynolds number

Angle of attack

 

cl

 

cd
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Next Reynolds number

Number of data points to follow for next Reynolds number

Added data points

Eppler data up to here
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Interpolation Methods Used by PROPID
•

 
Lift
–

 
Linear interpolation with angle of attack and 
Reynolds number

•

 
Drag
–

 
Linear interpolation with angle of attack and 
logarithmic interpolation with Reynolds number

•

 
No extrapolation of the data
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•

 
Interpolation Examples
–

 
S809 at a Reynolds number of 1,500,000 using 
data at 1,000,000 and 2,000,000

•

 
Lift curve
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•

 
Drag polar
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–

 
S825 at a Reynolds number of 4,000,000 using 
data at 3,000,000 and 6,000,000

•

 
Lift curve
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•

 
Drag polar
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•

 
Why Not Extrapolate the Data?
–

 
Extrapolation not as accurate as interpolation

•

 
S825 at a Reynolds number of 4,000,000 using 
data at 2,000,000 and 3,000,000
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–

 
Extrapolation below the lowest Reynolds number 
available in the airfoil data file(s) is difficult

•

 
Laminar separation effects can significantly alter the 
airfoil characteristics, particularly below 1,000,000

–

 
Instead of having the code do the extrapolation, 
extrapolate the data manually if needed

•

 
Can inspect and modify the data before using it
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Interpolated Airfoils
•

 
Definition
–

 
Interpolated airfoils results from using more than 
one airfoil along the blade (often the case)

•

 
PROPID Modeling of Interpolated Airfoils
–

 
Data of both “parent”

 
airfoils are mixed to get the 

data of the interpolated airfoil
•

 
Linear transition

•

 
Non-linear transition using a blend function

–

 
How accurate is this method?
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•

 
Representative Cases 
–

 
Case 1: S825/S826

•

 
Same Clmax

 

and similar t/c (17% vs 14%)

–

 
Case 2: S809/S810

•

 
Same Clmax

 

and similar t/c (21% vs 18%) 

–

 
Case 3: S814/S825

•

 
Not same Clmax

 

nor thickness

–

 
All cases are a 50%–50% linear mix

–

 
Results generated using XFOIL for a Reynolds 
number of 2,000,000
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–

 
Case 1: 50%–50% S825/S826

XFOIL Results : Re = 2,000,000
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–

 
Case 2: 50%–50% S809/S810

XFOIL Results : Re = 2,000,000
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–

 
Case 3: 50%–50% S814/S809

XFOIL Results : Re = 2,000,000
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•

 
Conclusions on Interpolated Airfoils
–

 
Similar Clmax

 

and t/c is not a necessary condition 
for good agreement

–

 
Similarities in shape and point of maximum 
thickness likely key for good agreement

–

 
Use as many “true”

 
airfoils as possible, especially 

over the outboard section of the blade
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Sources of Airfoil Data
•

 
Wind Tunnel Testing
–

 
Airfoil tests sponsored by NREL

•

 
Delft University Low Turbulence Tunnel

–

 

S805, S809, and S814
–

 

Reynolds number range: 0.5 –

 

3 millions
–

 

Lift / drag: pressure dist. / wake rake

•

 
NASA Langley Low Turbulence Pressure Tunnel

–

 

S825 and S827
–

 

Reynolds number range: 1 –

 

6 millions
–

 

Lift / drag: pressure dist. / wake rake
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•

 
Ohio State University AARL 3’

 
x 5’

 
Tunnel

–

 

S805, S809, S814, S815, S825, and many more 
–

 

Reynolds number range: 0.75 –

 

1.5 million
–

 

Lift / drag: pressure dist. / wake rake

•

 
Penn State Low-Speed Tunnel

–

 

S805 and S824
–

 

Reynolds number range: 0.5 –

 

1.5 million
–

 

Lift / drag: pressure dist. / wake rake

•

 
University of Illinois Subsonic Tunnel

–

 

S809, S822, S823, and many low Reynolds number 
airfoils

–

 

Reynolds number range: 0.1 –

 

1.5 million
–

 

Lift / drag: pressure dist. or balance / wake rake
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–

 
Experimental methods used to simulate roughness 
effects

•

 
Trigger transition at leading edge using a boundary-

 layer trip (piece of tape) on upper and lower surface
•

 
Apply grit roughness around leading edge

–

 

More severe effect than trips
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•

 
Computational Methods for Airfoil Analysis
–

 
Eppler Code

•

 
Panel method with a boundary-layer method

•

 
For pricing contact: Dan Somers (Airfoils Inc.)

–

 
XFOIL 

•

 
Panel method and viscous integral boundary-layer 
formulation with a user friendly interface 

•

 
Open Source (free online)

•

 
Written by: Prof. Mark Drela, MIT

–

 
Both codes handle laminar separation bubbles 
and limited trailing-edge separation over a range 
of Reynolds numbers and Mach numbers
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–

 
Computational method used to simulate 
roughness effects

•

 
Fixed transition on upper and lower surface

–

 

Typically at 2%c on upper surface and 5%–10% on 
lower surface

–

 

Automatic switch to turbulent flow solver
–

 

Transition process not modeled
–

 

Device drag of roughness elements not modeled
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Computational vs Experimental Data
•

 
Sample Results
–

 
S814 at a Reynolds number of 1,000,000 (clean)

•

 
Lift curve

Note: results shown are not from the most recent version of the Eppler code
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•

 
Drag polar
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Note: results shown are not from the most recent version of the Eppler code



27

•

 
S825 at a Reynolds number of 3,000,000 (clean)

•

 
Lift curve
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•

 
Drag polar
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•

 
SG6042 at a Reynolds number of 300,000 (clean)

•

 
Drag polar

•

 
Agreement is not typically as good at lower 
Reynolds numbers than 300,000

0

0.2
0.4

0.6

0.8

1
1.2

1.4

1.6

0.000 0.005 0.010 0.015 0.020 0.025 0.030

cd

cl

Exp. (NASA Langley LTPT) XFOIL



30

•

 
S825 at a Reynolds number of 3,000,000 (rough)

•

 
Drag polar
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Note: results shown are not from the most recent version of the Eppler code
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•

 
Effect of the XFOIL parameter Ncrit

 

on Drag
–

 
S825 at a Reynolds number of 3,000,000 (clean)

–

 
Ncrit

 

related to turbulence level
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•

 
Conclusions on Experimental vs Computational Data
–

 
There are differences but trends are often captured

–

 
Computational data is an attractive option to easily 
obtain data for wind turbine design

–

 
Rely on wind tunnel tests data for more accurate 
analyses

•

 
Clmax

•

 
Stall characteristics

•

 
Roughness effects

–

 
Both the Eppler code and XFOIL can be empirically 
“fine tuned”

 
(XFOIL Parameter Ncrit

 

)
–

 
Both methods continue to improve
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