July 24, 2014

YET ANOTHER AIRFOIL

ROGER C. ALPERIN

The Joukowski airfoil is obtained by applying the transformation $z+\frac{1}{z}$ to a circle. It is a quartic curve. Here we describe another airfoil; it also is a quartic curve given by the equation $A F$:

$$
\begin{gathered}
m^{2}\left(x^{2}+y^{2}\right)^{2}-2\left(x^{2}+y^{2}\right)(A x+B y)+(C x+D y)^{2}=0 \\
A=m(m u-v), B=\left(2+m^{2}\right) v-m u, C=m u-v, D=-(u+m v) .
\end{gathered}
$$

Here is how our curve is obtained. Given two lines L, M meeting at O and a point P. For every line N through P make the circle through the three points O, and the two intersections Q, R of N with L, M. Our airfoil is the envelope of this family of circles.

Let us choose coordinates so that O is at the origin; $P=(u, v), L$ is the x-axis and M has equation $y=m x$.

Suppose that the line N meets the x-axis at $(t, 0)$ then the equation for N is $y=\frac{v}{u-t}(x-t)$ and it meets M when $m x=\frac{v}{u-t}(x-t)$. Thus the equation of the circle in the family for this line is $x^{2}+y^{2}-t x-s y$, where $s=\frac{t(m v+u-t)}{m(t-u)+v}$.

The envelope of a family of curves $f(x, y, t)$ depending on a parameter t has an equation obtained by elimination of t from the system $F=f(x, y, t)=0, G=\frac{\partial f}{\partial t} f(x, y, t)=0$. We can easily eliminate t from these by computing the discriminant of F with respect to t giving the equation $A F$ above.

This curve has a singularity at the origin and the singular tangents are the factors of the quadratic terms. Since the quadratic term is squared it is a cusp. The line $y=m x$ is also tangent and the curve is tangent to the x-axis.

We can rewrite this equation in terms of complex coordinates $z=$ $x+i y$ in order to obtain

$$
m^{2}(z \bar{z})^{2}+z \bar{z}(\bar{b} z+b \bar{z})+2\left(\bar{f} z^{2}+e z \bar{z}+f \bar{z}^{2}\right)=0 .
$$

Solving we obtain $b=m v-m^{2} u+I\left(2 v+m^{2} v-m u\right), 2 e=(1+$ $\left.m^{2}\right)\left(u^{2}+v^{2}\right), 2 f=\frac{1}{2}\left(u^{2}-v^{2}\right)\left(m^{2}-1\right)-2 m u v+I\left(m\left(v^{2}-u^{2}\right)+(1-\right.$ $\left.m^{2}\right) v u$.

Figure 1. $m=1.1, u=1, v=.1$

Using the Maple plot package we obtain the two Figures.
implicitplot (subs ($\mathrm{m}=1.1, \mathrm{u}=1, \mathrm{v}=.1, \mathrm{AF}$) , $\mathrm{x}=0 . .3 / 2, \mathrm{y}=0 \ldots 1$, numpoints=20000)
implicitplot (subs($\mathrm{m}=1.1, \mathrm{u}=2, \mathrm{v}=.3, \mathrm{AF}$) , $\mathrm{x}=0 . .3, \mathrm{y}=0 \ldots 1$, numpoints=20000)

Figure 2. $m=1.1, u=2, v=.3$

Figure 3. $m=1.05, u=6, v=.3$
Parameterization Let

$$
\begin{aligned}
& x=\frac{v t^{2}\left(m t^{2}-2(m u-v) t+(m u-v)(u+m v)\right)}{m^{2} t^{4}-4 m(m u-v) t^{3}+2(3 m u-2 v)(m u-v) t^{2}-4 u(m u-v)^{2} t+\left(u^{2}+v^{2}\right)(m u-v)} \\
& y=\frac{v t^{2}(m t-m u+v)^{2}}{m^{2} t^{4}-4 m(m u-v) t^{3}+2(3 m u-2 v)(m u-v) t^{2}-4 u(m u-v)^{2} t+\left(u^{2}+v^{2}\right)(m u-v)}
\end{aligned}
$$

then these satisfy the equation $A F=0$.
With Maple
$\mathrm{p}:=$ subs $(\mathrm{m}=1.05, \mathrm{u}=6, \mathrm{v}=.3, \mathrm{x})$;
$\mathrm{q}:=\operatorname{subs}(\mathrm{m}=1.05, \mathrm{u}=6, \mathrm{v}=.3, \mathrm{y})$;
plot([p,q, t=-300..300], numpoints=3000)
we obtain Figure 3.
Department of Mathematics, San Jose State University, San Jose, CA 95192

E-mail address: roger.alperin@sjsu.edu

