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Fig.23 Measured lift curves for the S6071/3 airfoils.
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Fig. 24 S6074/6 airfoils and inviscid velocity distributions.
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Fig. 25 Measured drag polars for the S6074/6 airfoils.

series was to examine the effects of a change in the pitching moment, which was
specified using the inverse capabilities of PROFOIL. In comparing the velocity
distributions shown in Fig. 24 with those in Fig. 27 it is seen that this current series
has a more concave velocity distribution on the forward upper surface, and this
difference is reflected in the shapes of the S6074/6 vs S6077/9 shown in Fig. 28.
As seen in Fig. 29, this change in the velocity distribution is enough to eliminate
the stall hysteresis. Finally, the performance is shown in Fig. 30. One feature of

S6074 Re = 200,000 S6076 Re = 200,000
4 Increasing o & Increasing o
8  Decreasing o 8 Decreasing o
SUEEJEEN ! L1
| 1 ¢ |
I | o
1.0 T ;5 | -02 10
11 BT |
C.‘ Ik ! “a, nnﬂ‘: c.’ !
05 g 22 -0.1 05 e o
n:"aﬂnﬂ I |
[ | [ 1T1]C | e
g al J &
0.0 |t LLLU LE] 00 o0 : ‘ 0.0
b ; H
- |
| [ | [
-0.5 — g - 01 -05 01
-10 0 10 -10 0 10 20
o (deg) o (deqg)

Fig. 26 Measured lift curves for the S6074/6 airfoils.
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Fig. 27 S6077/9 airfoils and inviscid velocity distributions.

using a more concave distribution is that the a* —¢ curve (not shown) becomes
more shallow. As a result, the laminar-separation bubble drag is reduced at the
upper corner of the low-drag range, yielding lower drag than the S6074/6 but also
lower maximum lift as a tradeoff.

IV. Summary and Conclusions

In this chapter, three series of airfoils were designed to illustrate the power of
modern computational tools for low Reynolds number airfoil design and analysis.
Emphasis was placed on the design of the airfoils based on boundary-layer consid-
erations. More specifically, the parameterization of the design problem centered
around prescribing desirable boundary-layer features directly through an inverse

Fig.28 S56074/6/7/9 airfoils with the thickness magnified to show the small differences.
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Fig. 29 Measured lift curves for the S6077/9 airfoils.

method. Formulating the design problem in this way offers the designer consider-
ably more power than one would otherwise have using more traditional methods
of inverse design (based on a single-point velocity distribution) and design by geo-
mefric perturbation. The design approach and philosophy can be used successfully
to assess design tradeoffs with a high degree of control. Finally, wind-tunnel testing
of low Reynolds number airfoils is, however, still needed to provide engineers with
a necessary level of confidence required to make important engineering decisions.
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Fig. 30 Measured drag polars for the S6077/9 airfoils.
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