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THE AERODYNAMIC BENEFITS OF
SELF-ORGANIZATION IN BIRD FLOCKS

Glen A. Dimock∗ and Michael S. Selig†

University of Illinois at Urbana–Champaign
Urbana, IL 61801

Natural aggregation processes such as the familiar flocking of birds have been ac-
curately modeled using a simple, decentralized controller. Variations on this “boid”
controller typically involve three or more control laws, each with an associated control
gain and sensor range. In this paper, the boid controller is fitted with an additional rule
designed to produce aerodynamically-efficient formations, such as those exploited by mi-
gratory birds and hypothetical unmanned aerial vehicles. A simple genetic algorithm is
then used to optimize the control parameters for minimum power consumption in a flock
of simulated birds. This report focuses on the development and utility of the flocking
simulator as a fitness function for the GA. Preliminary results indicate that average power
consumption can be significantly reduced with the modified, optimized boid controller.

Introduction

BIRD formations have previously been studied on
a macroscopic level, revealing that a V-formation

experiences substantial drag savings over other, more
disparate arrangements.1 Empirical results indicate
that birds in formation can fly farther than their soli-
tary counterparts,2 and numerical simulations have
confirmed that these formations indeed offer drag ben-
efits to the overall flock. The same studies, however,
have also shown that the drag experienced by each bird
can vary widely throughout a formation,3 leading to
arguments that cooperation must play an important
role in sustaining any formation.4 While cooperation
(and sacrifice) may be necessary for optimal forma-
tions, this paper explores the near-optimal global drag
savings that can result from purely selfish interests at
the local level. As opposed to modeling the flock as
a cohesive unit, this approach considers a flock com-
prised of autonomous, uncooperative agents. For the
purposes of this paper, a flock is defined as two or more
related but autonomous entities, such as birds or air-
planes. Formation flight, which may or may not take
place within a flock, is defined as relative positioning
that is aerodynamically advantageous to at least one
member of the formation.

Numerous schemes have been proposed for modeling
decentralized systems such as flocks of birds or un-
manned aerial vehicles (UAVs). One method, popular
in the engineering community, involves the extension
of linear classical control theory to examine groups of
independent controllers.5 This approach is less than
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ideal for explaining self-organizing behavior in natural
systems, however, because it typically assumes some a
priori knowledge of the optimal relationship between
system agents and often cannot predict global stability.
To address real biological issues, such as competition
and cooperation between agents, a particle system
model developed by Reynolds6 is used instead. His
boid model assigns simple rules to each system agent
and has been cited in a wide variety of disciplines, in-
cluding recent controls studies.7 For the purposes of
this research, the system agents, dubbed “boids” by
Reynolds, are representative of birds or UAVs.

While Reynolds’ boid model was originally con-
ceived to produce more realistic computer animations
of aggregate motion in animals, it has recently received
attention as a promising method for implementing de-
centralized control in flocks of UAVs.8,9 These studies
have demonstrated the effectiveness of the boid control
concept for managing conflicting goals, such cohesion
and separation, in a flock of UAVs while also achiev-
ing core mission objectives, such as navigation and
targeting. Whereas formation flight is useful for re-
ducing drag and extending the range of flock members,
however, existing studies have not considered drag
reduction or formation flight as an extension to the
conventional boid flocking rules. Because endurance
is a critical issue in developing practical UAVs, the
conventional boid model is herein expanded to include
a rule that includes aerodynamic effects and aims to
reduce drag. One aim is to show that a priori knowl-
edge of an optimum formation is unnecessary in the
pursuit of global drag savings; individual selfish in-
terests are sufficient to benefit the group and even
produce the ubiquitous V-formation commonly found
in migrating bird flocks. This paper focuses on the
simulation of bird flight, demonstrating that the boid
controller, when optimized for drag reduction, is con-
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sistent – at least superficially – with the designs nature
has evolved over hundreds of millions of years.

Implementing a boid-style controller requires the
choice of numerous controller gains and sensor ranges
for optimal results, which by hand is a tedious and of-
ten intractable process due to the nonlinear nature of
the boids system. Instead, this paper proposes the
utility of a simple genetic algorithm for optimizing
three gains and two sensor ranges specific to the prob-
lem of power reduction in formation flight. Because
of the nature of this problem, the fitness evaluation is
necessarily a simulation of formation flight, suggesting
a very computationally-expensive task. Consequently,
the development of a simple but valid, consistent fit-
ness function is of paramount importance in this prob-
lem and constitutes the bulk of this research. Consis-
tency in the fitness function refers to constant results
for various starting conditions and noise inputs.

Related Work

Researchers have previously used genetic program-
ming (GP) to develop decentralized controllers for
coordinated group motion, with varying degrees of suc-
cess. Reynolds began applying GP to autonomous
agents in 199210 and continued this work for several
years.11–14 In these studies, he examined both homo-
geneous and heterogeneous populations during fitness
trials, as well as the effects of noise in fitness trials,
determining that noise plays a major role in evolving
robust controllers with GP. Other researchers contin-
ued the trend of heterogeneous, competitive fitness
environments,15,16 demonstrating that multiple trials
are needed for accurate ranking, due to the strong
fitness dependence on the individuals present in each
population. In 1996, Zaera et al.17 attempted to evolve
a schooling controller using a homogenous fitness en-
vironment and failed. Formulating the fitness function
proved to be a problem in this study, as with others.

From the results of these papers, it was decided that
genetic programming would not be attempted in the
first iteration of this study, but rather a genetic algo-
rithm to optimize parameters for existing, fixed control
laws. Reynolds demonstrated that GP-designed con-
trollers are often “brittle” in the presence of noise, an
undesirable trait for any airplane controller. Secondly,
although coevolution with a competitive fitness envi-
ronment was originally considered for this project, this
approach was abandoned in favor of homogenous fit-
ness trials. Coevolution, while offering a more realistic
simulation of biological systems and allowing for the
evolution of multiple optimal controllers, is more com-
putationally expensive than a homogenous approach
and would have required significantly more computer
time than was available for this research. Finally, the
importance of using a consistent fitness function is un-
derscored by the work of Reynolds and others.

Flocking Simulator

The specialized controller presented here is derived
from Reynolds’ original version, using a subset of the
original behavioral rules and adding a new aerodynam-
ics rule. In Reynolds’ system, each agent is controlled
by a set of rules that generate behavior according to
the state of other agents in the system. This behav-
ior usually takes the form of an acceleration vector.
In the simplest case, as is used in this study, it is
assumed that each boid commands perfect, realtime
knowledge of the system state and that acceleration
may be applied uniformly in any direction. Of course,
a commercial grade controller would need to contend
with system, actuator and sensor dynamics.

A modified boid controller is implemented as part of
a discrete-time, multi-agent simulation, coded in C++
on a desktop PC. The aerodynamic drag-reduction
rule includes a discrete lifting line model, which pre-
dicts the induced drag associated with each bird at
each time step. While facilitating various calculations
associated with the drag-reduction rule, the drag pre-
diction function also accommodates fitness evaluations
for the GA, as described below.

Controller Rules

Reynolds’ original boid model involves three basic
rules, of which two are used in this study: cohesion and
collision avoidance. A drag-reduction rule, based on a
simple but systems-level accurate aerodynamic model,
is added to the original rules. Figures 1a and 1b illus-
trate the conventional rules of cohesion and collision,
respectively. Figure 1c shows the new drag reduction
rule, and Fig. 1d provides a key.

For each boid in the flock, each rule produces a ve-
locity demand that is derived from the state of each
other boid and weighted according to a constant gain.
In addition, each rule (except for drag-reduction) also
has an associated sensor range, which determines the
relative contribution of each other boid to the rule.
The velocity demands are summed and scaled to gen-
erate a final acceleration demand, which takes into
account the system dynamics of the vehicle. The
mathematical implementation of the controller rules,
adapted from Reynolds6 and Crowther et al.,8 is de-
scribed below.

Cohesion

Cohesion, the first and most “central” rule to any
flock, states that the individual should move toward
the centroid of the flock. This rule nominally employs
a small gain and a large sensor range, wherein the
urge to congregate is just strong enough to prevent
lone boids, and the range is large enough to include
the entire flock.

The velocity demand on each boid due to the cohe-
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sion rule is given as

VC = KC
XC

|XC|

[
1− exp

{
−

( |XC|
RC

)2
}]

(1)

where KC is the gain associated with this rule and RC

is the sensor range. The centroid XC is calculated as

XC =

n∑
j=1

wjXj

n∑
j=1

wj

(2)

where Xj is the position of each other boid j, and wj is
the “distance” weight associated with each other boid,
namely

wj = exp

{
−

( |Xj|
RC

)2
}

(3)

Using this method, the sensor range has two effects: to
weight the relative location of each other boid (distant
boids have little effect) and to weight the location of
the flock centroid (incentive to return more quickly to
a far-away flock). The rule gain linearly scales the
overall effect.

Collision Avoidance
The avoidance rule is essentially the inverse of the

cohesion rule, preventing neighboring boids from col-
liding. The avoidance-rule gain is nominally set high,
with a small sensor range; avoiding nearby boids is
very important.

The avoidance velocity demand is calculated sim-
ilarly to the cohesion velocity, except that the rule
gain is now inversely proportional to the centroid dis-
tance of neighboring boids (the closer the threat, the
stronger the rule). Thus, Eq. 1 is adapted for collision
avoidance to yield

VA = KA
XA

|XA| exp

{
−

( |XA|
RA

)2
}

(4)

and all of the other cohesion equations are reused for
this rule, replacing the cohesion C subscript with the
avoidance A subscript.

Drag-Reduction Rule
The novel aerodynamics rule aims to reduce each

boid’s power consumption by computing the induced
drag gradient and producing a velocity demand along
this gradient. As for physical motivation, this rule as-
sumes that birds are capable of sensing small changes
in drag as they move through space. In a system of
UAVs, this gradient could be computed based on their
relative locations with respect to one another, assum-
ing the presence of a wake model.

Although the aerodynamics of birds in flapping
flight are decidedly unsteady and complex, a steady-
state aerodynamic model is used as a first approxima-
tion. It is also assumed that induced drag is the most

Fig. 1 Flocking rules used in this research: cohe-
sion (a), collision avoidance (b) and drag reduction
(c). Symbols are given in (d).

variable and the only significant drag term (within
the context of this simulation), that vorticity is shed
purely along the x axis (an adequate approximation if
the bird’s velocity is mostly forward), does not decay
and always consists of straight filaments that remain
bound to the bird’s wings, and that all birds have iden-
tical, constant physical parameters.

In classic aeronautical fashion, each boid is modeled
as a discrete vortex system, with the wake assumed to
lie in the horizontal plane (see Fig. 2). Induced drag
(Fig. 3) on a wing in the presence of a vortex is known
to vary proportionally to the strength and distribution
of the downwash induced by the vortex, and the total
drag may be obtained by integrating the effect of every
vortex in the system over the span of the wing. A more
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Fig. 2 Discrete vortex system for a three-
dimensional wing. The vortex system has been
simplified for clarity of illustration; 10 discrete fil-
aments were used in the simulations.

Fig. 3 Induced drag for a three-dimensional wing.

comprehensive discussion of discrete vortex theory and
induced drag is given in Ref. 18.

Figure 4 illustrates the downwash induced at a given
point on one wing due to a discrete trailing vortex
originating on another wing. It can be shown that the
vertical z component of the downwash at an offset yp

on a wing centered at P in space, due to a discrete
vortex filament of strength δΓ trailing from an offset
yq on a wing originating at point Q is:

w =
−δΓ (Py − yq + yp −Qy) (−Px + Qx + A)

4π
(
(Py − yq + yp −Qy)2 + (Pz −Qz)

2
)

A
(5)

where

A =
√

(Px −Qx)2 + (Py − yq + yp −Qy)2 + (Pz −Qz)
2

and that the vertical component of the downwash at
the same point, due to a bound vortex of strength Γ
stretching between y1 and y2 on the same wing origi-
nating at Q is:

Fig. 4 Induced downwash on a wing at point P
due to a trailing vortex from another wing at point
Q.

w =
Γ (−Px + Qx) (B1 + B2)

4π
(
(Px −Qx)2 + (Pz −Qz)

2
) (6)

where

B1 =
Py − y1 + yp −Qy√

(Px −Qx)2 + (Py − y1 + yp −Qy)2 + (Pz −Qz)
2

and

B2 =
−Py + y2 − yp + Qy√

(Px −Qx)2 + (Py − y2 + yp −Qy)2 + (Pz −Qz)
2

Note that when computing downwash, points P and Q
are constrained to a grid of spacing ∆y, which corre-
sponds to the distance between vortex filaments. This
constraint is necessary in discrete lifting line theory.
In the equations above, P∗ refers to the ∗ component
of point P , i.e. Px = P · î.

Summing these two expressions for downwash at a
single station on a wing due to all vortex filaments and
bound vortices in the system of wings, it is possible to
iteratively solve for the bound vorticity distribution
Γ(y) on each wing.18 In this study, a rectangular wing
with zero twist is assumed, and the geometric angle
of attack is solved iteratively as an inner loop while
solving for Γ(y). The angle of attack α is determined
from the constraint L = W .

After solving for Γ(y) at each time step, the induced
drag on each wing may be expressed as

Di = ρV

k∑

j=1

Γ(y)αi∆y (7)

The drag-reduction rule accelerates each boid in a
direction of decreasing induced drag, which requires
the calculation of the induced drag gradient. This pro-
cedure is performed numerically, by perturbing each
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boid plus and minus one grid space ∆y in each or-
thogonal direction and computing the induced drag, as
described above, at each location. To compute the ve-
locity demand, the negative gradient is taken to yield
a direction of decreasing induced drag.

VD = −KDVd (8)

where Vd is the drag gradient computed above.

Acceleration
Upon calculating the weighted velocity demand for

each individual rule, the final velocity demand is a
simple sum of these parts:

V = VC + VA + VD (9)

This simulation treats the flock as a particle system
and simply assigns the new velocity at each time step.
These assumptions are reasonable when the final solu-
tions is expected to be steady state.

Fitness Evaluation

For the purposes of fitness evaluation, the above
rules are implemented in a C++-based simulation of
five identical boids, evaluated over 20 sec of flight in
time steps of 0.1 sec. The boids’ physical parameters
are as follows: wingspan b = 5 ft, chord c = 1 ft, weight
W = 10 lb, freestream velocity V = 30 ft/sec, zero-lift
angle of attack α0 = −1 deg, lift curve slope a = 2π,
10 discrete vortex filaments, standard sea-level atmo-
spheric conditions. Because the ultimate objective of
the research is to produce a controller that results in
the lowest average power consumption for a flock of
boids, (negative) average power consumption is used
as a fitness measure. The fitness of any individual
controller is then

f = − 1
n

n∑

i=1

w

t
(10)

where w is the total work expended by each of n boids
over the simulation run, and t is the time elapsed (20
sec). At each time step, the work w is incremented by
DiV ∆t for each boid.

In addition, the boids are subject to the constraint
that they may not collide. While the collision avoid-
ance rule is used for this purpose, it provides no
guarantee; a small control gain or large sensor range
may render this rule ineffective. A collision is defined
as a separation distance of less than one grid space
∆y between any two individuals and is checked for
at each time step. Should a collision occur, the sim-
ulation is halted, and a fixed fitness value of −1000
(lower than any expected normal fitness value) is as-
signed. It is not possible to differentiate between the
fitness values of controllers suffering from collisions,
because their simulations are necessarily incomplete.
Although the power consumption up until the time of

collision could be used as a fitness measure, this prac-
tice could improperly favor controllers that tend to
increase their power consumption (but collide) as time
progresses. Therefore, controllers that suffer collisions
are effectively thrown out during tournament selection
by using an artificially-low fitness value. In the event
that two unfit controllers are paired in a tournament,
one is selected at random.

The boids are also subject to the obvious constraint
that the aerodynamic equations must converge at each
simulation step. In the rare event that convergence
does not occur, a fixed fitness value of −1000 is as-
signed, for the same reasons as with any collision. The
equations have been observed to diverge under very
specific circumstances, but this happens so rarely (less
than 0.5% of all cases) as to not significantly affect the
performance of the GA.

For consistency, the boids are always started from a
V-formation. This general formation is known to be a
near-optimum aerodynamic shape,1 so it is expected
that optimum controller gains and sensor ranges will
produce a stable V-formation for best power con-
sumption. Allowing the boids to produce a V forma-
tion when started from random or non-V formations
presents additional challenges and is left for future
work.

Evolutionary Optimization
The genetic algorithm (GA) is a type of evolution-

ary optimization often applied to problems with large,
nonlinear design spaces that cannot be effectively at-
tacked using conventional, calculus-based methods.19

A simple genetic algorithm (SGA), a C++ adapta-
tion of Goldberg’s Pascal SGA, is used to optimize
five parameters in this reserach: cohesion gain Kc,
collision avoidance gain Ka, drag-reduction gain Kd,
cohesion sensor range Rc, and collision avoidance sen-
sor range Ra. To enforce bounds on the values the
parameters may take, each floating-point parameter is
mapped to an integer with 10 bits of precision, such
that an integer value of zero corresponds to the min-
imum acceptable floating-point parameter value, and
210 represents the maximum acceptable value. The
five integer mappings, stored as 10-bit binary strings,
are concatenated in the order given above into a chro-
mosome of length 50. From this representation, each
parameter may assume one of 1024 (210) possible val-
ues, yielding a design space of 1125899906842624 (250)
possible unique strings.

Before any optimization is performed using integer
mapping, it is necessary to determine the acceptable
bounds on the control parameters. The simulation is
run with hand-selected parameter values, and “rea-
sonable” values are determined by noting regions of
undesirable results, including instability and unreal-
istic velocity demands. This process yields a range of
0–100 for each control gain, 3–100 for the cohesion sen-

5 of 9

American Institute of Aeronautics and Astronautics Paper 2003–0608



sor range, and 2.5–50 for the collision avoidance sensor
range. It should be noted that the minimum collision
avoidance sensor radius is chosen to be nearly large
enough to encompass the entire wing, and that the co-
hesion sensor range should not fall within the collision
avoidance range.

It is expected that the most significant building
blocks in this problem will encompass the high bits
for each of the five parameters. These bits determine
the general size of each value (large or small) and will
likely converge early in the GA run. Also, because
some of the parameters are clearly linked (cohesion
gain and sensor range for example), the schemata de-
scribing the combined high bits of each pair (or triplet)
will be important in determining fitness. In fact, the
three gain parameters are located adjacent to one an-
other in the chromosome for this reason; it is expected
that the most significant coupling will take place be-
tween these parameters. If this is so, then important
building blocks encompassing multiple gains will stand
a higher chance of survival if they can be kept short.

Three basic operators are used in this simple GA
application: selection, crossover and mutation. This
set is chosen to keep the GA portion of the study rela-
tively simple while focusing on the fitness evaluation,
with the expectation that a competent GA or hybrid
method will be attempted in a future study. Further-
more, previous related studies have successfully used
SGAs and performed trade studies to determine appro-
priate parameters for this problem class. Based on the
works of Reynolds et al., tournament selection is used
with a selection pressure of 2, crossover probability is
set at 1, and the mutation rate is 0.01. Population
size is set at 50, a value determined by the available
CPU time (see below). These values are not varied,
and a trade study of GA parameters is not performed
as part of this research.

Using the SGA and fitness function described above,
one controller evaluation requires approximately 30 sec
of processing time on a 1.8 GHz Pentium 4 processor.
This figure suggests a run-time of 25 min per genera-
tion, assuming 50 individual controllers, which adds to
several days when considering a typical number of gen-
erations (more than 100). Because this study aims to
refine the fitness function by performing multiple GA
runs, a parallel processing scheme was developed us-
ing existing C++ network functions developed as part
of another project. Briefly, this system consists of a
GA “host” machine that farms out fitness evaluations
to many networked “client” machines. By installing
the client application on 10 or more PCs with Internet
access, it is possible to decrease the GA runtime from
several days to several hours.

Results
The fitness evaluation simulation underwent several

major iterations, as weaknesses were discovered and
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Fig. 5 Average and best fitness vs. gener-
ation (controllers unfit due to collision or non-
convergence omitted)

exploited by the GA. For example, the original simu-
lation modeled each boid as a horseshoe vortex system,
wherein only two trailing vortices exist for each wing.
The GA quickly revealed that boids with high drag-
reduction gain tend to form a row in the direction of
flight, exploiting an artifact of the (overly) discrete
nature of the system. The model was eventually re-
fined to its current state through similar encounters,
along the way adding multiple vortex filaments and the
discrete gradient method, and solving for Γ(y) and α
iteratively. The resulting simulation is much less prone
to exploitation by the GA.

Figure 5 shows the average and best-ever fitness re-
sults over 150 generations using the coding, operators
and fitness evaluation described above. Note that the
plotted fitness values do not include the artificially-low
numbers of unfit controllers, i.e. those who collided or
did not converge. The GA clearly converges, reach-
ing a best-fitness value of −9.8 HP. Furthermore, this
value is significantly improved over the best fitness the
authors were able to produce by hand (−13 HP).

Figures 6–8 illustrate the properties of the best-ever
controller early in the run, midway through, and after
150 generations. As discussed above, it is expected
that an optimum controller will fly in a stable V-
formation. Indeed, by studying the position traces at
these various stages of development, it is observed that
the early controller flies in a chaotic pattern, whereas
the best-ever controller only adjusts the angle of the
V and maintains the formation thereafter. The results
of this flocking behavior are reflected in the plots of
average induced drag, which is expected to decrease
over time for a controller forming a beneficial forma-
tion. Such is the case for the best-ever controller, who
refines his V formation and enjoys reduced drag as a
result.

One major problem with the current fitness evalu-
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Fig. 6 Position trace and average drag for the best
controller after generation 5 (EARLY). Boids are
moving from 4 to ©.

ation, not evident in these plots, is that of collision
avoidance. The parameters of the best-ever controller
are as follows: Kc = 31.05, Ka = 0.29, Kd = 7.42,
Rc = 33.37, Ra = 3.52. Here, it may be observed
that the collision avoidance gain is too small to pre-
vent most collisions, and the collision avoidance sensor
range is too small to detect most nearby boids. This
result presents a problem, for the controller is too
aggressively pursuing drag-reduction at the risk of pos-
sible collisions. Unfortunately, the fitness evaluation
fails to detect most collisions for two reasons: the total
simulation time is short so as to reduce GA run times,
and the boids always start from the same positions,
leading to a somewhat “brittle” solution. As with pre-
vious model problems, the GA took full advantage of
this weakness. The small collision avoidance gain took
hold within 10 generations, causing over 75% of all
controllers to have Ka < 2.0 by this time. Collisions
began to rise, but remained too sporadic to weed these
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Fig. 7 Position trace and average drag for the
best controller after generation 13 (MIDWAY to
convergence). Boids are moving from 4 to ©.

members from the population.
A possible solution for this problem would be to re-

strict the collision avoidance gain to higher values, but
such an action would not necessarily prevent all colli-
sions. Both of the other rules generally lead to cohe-
sion, causing ambiguity in the proper minimum value
for this gain and associated sensor range. A better so-
lution would involve additional simulations designed
to encourage collisions within each fitness evaluation,
possibly by starting the boids in tightly-packed forma-
tions. Alternatively, the collision avoidance velocity
demand could be made even more nonlinear with re-
spect to separation distance. It currently increases
exponentially with respect to distance, but a stronger
demand at close range could be achieved by using val-
ues larger than e for the exponential term.

Despite the lingering problems with collision avoid-
ance, it is clear from these results that the GA is
capable of optimizing a modified boid-style controller
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Fig. 8 Position trace and average drag for the
best controller after generation 150 (BEST over-
all). Boids are moving from 4 to ©.

to produce energy-efficient boids capable of maintain-
ing V-formations.

Future Work and Applications
Several avenues exist for future research into this

topic. First, ongoing work continues to refine
the fitness evaluation, including improved constraint-
checking. Collisions are an obvious candidate for the
new checks, but additional constraints may also be in-
troduced. These include no steady-state oscillations
(the current best controller tends to oscillate about
other birds’ trailing vortices when in the rear of a sta-
ble V) and a requirement for a stable formation after
some fixed time period.

The next obvious improvement to the fitness evalu-
ation would be to replace the current particle system
with a full, 6-DOF aircraft model for each boid, pos-
sibly including sensor models. This step would add
relevance for the control scheme to physical systems,
and plans are currently underway to use an existing

helicopter model for this purpose.
Given that the original motivation for this project

was to study the flocking behavior of geese, an un-
steady aerodynamic model would greatly enhance the
applicability of this controller to actual birds. Low
Reynolds number models of flapping flight are, them-
selves, topics of current research and would be well-
applied to this topic.

In addition to these potential areas of future re-
search, there exists the possibility of applying the boid
controller to the control of a flock of UAVs. Unmanned
aircraft are currently a popular research topic, espe-
cially with respect to formation and swarming flight.
While a more rigorous stability analysis would be re-
quired before using such a controller on any physical
system, this scheme and elements thereof offer the very
real possibility of reducing power consumption in a
flock of autonomous airplanes.

Conclusions
Birds are simulated using Reynolds’ flocking rules,

which are designed to reproduce the aggregate mo-
tion of animals. A new aerodynamics rule is added
to the conventional set in order to encourage birds to
fly in a direction of decreasing induced drag within
the flock. A simple genetic algorithm is used to opti-
mize the gains and sensor ranges of the various rules,
with the goal of reducing the average power consump-
tion in the flock. Results show that systems of au-
tonomous agents playing by Reynolds’ rules and seek-
ing only to reduce their own induced drag, can achieve
a global decrease in average induced drag and power
consumption. While these results may help to better
understand migratory bird flocking behavior from an
aerodynamic perspective, a more practical application
would be a control strategy for flocks of autonomous
UAVs. Whereas previous flocking studies of UAVs
have focused on cohesion and collision avoidance, the
addition of this simple aerodynamics rule could signif-
icantly increase the range of a UAV flock.
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